Cell migration in the postnatal subventricular zone
نویسنده
چکیده
New neurons are constantly added to the olfactory bulb of rodents from birth to adulthood. This accretion is not only dependent on sustained neurogenesis, but also on the migration of neuroblasts and immature neurons from the cortical and striatal subventricular zone (SVZ) to the olfactory bulb. Migration along this long tangential pathway, known as the rostral migratory stream (RMS), is in many ways opposite to the classical radial migration of immature neurons: it is faster, spans a longer distance, does not require radial glial guidance, and is not limited to postmitotic neurons. In recent years many molecules have been found to be expressed specifically in this pathway and to directly affect this migration. Soluble factors with inhibitory, attractive and inductive roles in migration have been described, as well as molecules mediating cell-to-cell and cell-sub-strate interactions. However, it is still unclear how the various molecules and cells interact to account for the special migratory behavior in the RMS. Here we will propose some candidate mechanisms for roles in initiating and stopping SVZ/RMS migration.
منابع مشابه
The medial migratory stream: a new turn in postnatal neurogenesis!
Adult subventricular zone neurogenesis is an important process in most mammals. However, whether it persists in humans is highly debated. Recent work by Sanai and colleagues provides a major step in settling this debate. Using histological approaches, they demonstrated an active subventricular zone with limited neurogenesis in humans as well as discovered a new migratory route.
متن کاملCyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone.
At the lateral wall of the lateral ventricles in the adult rodent brain, neuroblasts form an extensive network of elongated cell aggregates called chains in the subventricular zone and migrate toward the olfactory bulb. The molecular mechanisms regulating this migration of neuroblasts are essentially unknown. Here, we report a novel role for cyclin-dependent kinase 5 (Cdk5), a neuronal protein ...
متن کاملHedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons.
We examined the postnatal consequences of removing Hedgehog signaling within the adult stem cell niche. Although at birth the subventricular zone appears normal in mice lacking Hedgehog signaling, by postnatal day 8 it is greatly impaired, and cell death is increased. In addition, both the quiescent B stem cell population and transit-amplifying C cells become depleted postnatally. In contrast, ...
متن کاملRetinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway.
Neurogenesis persists throughout life in the rodent subventricular zone (SVZ)-olfactory bulb pathway. The molecular regulation of this neurogenic circuit is poorly understood. Because the components for retinoid signaling are present in this pathway, we examined the influence of retinoic acid (RA) on postnatal SVZ-olfactory bulb neurogenesis. Using both SVZ neurosphere stem cell and parasagitta...
متن کاملReaction of subventricular zone stem cells to the induction of experimental autoimmue encephalomyelitis in mouse
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. In the present study, we investigated the response of subventricular zone (SVZ) adult stem cells in the experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and also the differentiation fate of these stem cells. Methods: Mice were immunized with MOG peptide emulsified in complete Freund'...
متن کاملGABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone.
In the postnatal subventricular zone (SVZ), astrocyte-like cells tightly encapsulate chains of migrating neuronal precursors, although an influence of the astrocyte-like cells on precursor migration has not yet been demonstrated. Cell migration was studied in acute sagittal brain slices to determine whether GABA signaling between astrocyte-like cells and neuronal precursors controls the speed o...
متن کامل